Preliminary communication

ARENE SUBSTITUTION BY IRIDIUM COMPLEXES UNDER MILD CONDITIONS

KIYOSHI ISOBE, AMELIO VÁZQUEZ DE MIGUEL and PETER M. MAITLIS* Department of Chemistry, The University, Sheffield S3 7HF (Great Britain) (Received December 3rd, 1982)

Summary

 $[(C_5Me_5Ir)_2Cl_4]$ reacts with Al_2Me_6 in saturated hydrocarbons to give $[C_5Me_5IrMe_4)$ or *cis*- and *trans*- $[(C_5Me_5Ir)_2Me_2(\mu-CH_2)_2]$, depending on workup conditions. In benzene or toluene solution the main product is $[(C_5Me_5Ir)_2Me(Aryl)(\mu-CH_2)_2]$ (aryl = Ph or *m*- plus *p*-tolyl, ratio 2/1); if CO is introduced into the benzene solution the products are $[C_5Me_5Ir(CO)R^1R^2]$ ($R^1 = Me, R^2 = Ph; R^1 = R^2 = Me \text{ or } Ph$).

The recent reports [1] on the oxidative addition of aromatic C—H bonds to pentamethylcyclopentadienyl-rhodium and -iridium species under photolytic conditions prompt us to present some of our results concerning the arylation of pentamethylcyclopentadienyliridium complexes.

Reactions of $[(C_5Me_5Ir)_2Cl_4]$ (I) and Al_2Me_6 in pentane gave a yellow solution (A) which on oxidation gave the iridium(V) complex $[C_5Me_5IrMe_4]$ [2]; by careful working yields of 40% can now consistently be obtained. If the yellow solution A was treated with acetone the *cis*- and *trans*-di- μ -methylene bridged dimethyldiiridium complexes (II) were formed in 33% yield.

The low temperature (-90° C) ¹³C NMR spectrum of the yellow solution A showed the presence of only a single iridium complex [cyclopentane, -90° C, $\delta -29.9$ (IrMe₂), -16.6 (IrMeAl), -8.9 (Al₂Me₆, terminal), -4.9 (Al₂Me₆, bridge), -6.4 (Me₂AlCl), -10.7 (MeAlCl), +7.3 (C₅Me₅), and +92.4 (C₅Me₅)] which because of its similarity to that of the solution from reaction of [(C₅Me₅Rh)₂Cl₄] and Al₂Me₆ in hydrocarbon solvents [3] is assigned the same structure.

If, however, the solution of I and Al_2M_6 was made up in toluene- d_8 , even at -60° C some new species were immediately formed, as shown by the appearance of extra peaks, for example those due to C_5Me_5Ir at δ 9.2 and 9.9 ppm. After quenching with acetone (at -10° C) a 2/1 mixture of the dimethylene bridged

Scheme 1

trans-m- and -p-tolyl complexes (IIIa) and (IIIb) was isolated $(12\%)^*$. The analogous phenyl complex was obtained (23%) when Al₂Me₆ in benzene was added to complex I.

When a solution of I and Al_2Me_6 in benzene was exposed to carbon monoxide (1 atm, 20°C) the monocarbonyl complexes IVa, IVb and IVc $\nu(CO)$: 1958 (1981sh), 1973 and 1983 cm⁻¹, respectively) were obtained in 2, 11 and 18% yield respectively. Complex IVa was the only product if A made up in pentane was carbonylated.

The formation of IVb and IVc shows that the aryl—Ir bonds arise from A via intermediates of the type " $C_5Me_5IrPhMe$ " and " $C_5Me_5IrPh_2$ " rather than by an arylation of a subsequently formed $Ir_2(CH_2)_2$ skeleton. The formation of the mixed arylmethyl complexes IVb and III also shows that the reaction does not occur by oxidative of aryl-H to a C_5Me_5IrI species. Possible mechanisms include

^{*} Satisfactory microanalyses were obtained for all new compounds.

¹H NMR (400 MHz): trans-[(C₅Me₃Ir)₂(μ -CH₂)₂(Me)(m-tolyl)] (IIIa) (CD₂Cl₂) δ -0.512 (Ir-Me),

^{1.350, 1.589 (2 ×} C_3Me_3), 2.121 (MeC_4H_4), 6.324 (dt, J 1.5, 4.5 Hz), 6.622 (d, J 4.5 Hz), 6.624 (d, J 4.5 Hz), 6.668 (s, br), all aromatic H 7.057, 7.468 (2 × d, J 1 Hz, 2 × CH_2).

trans-[(C_3Me_3Ir)₂(μ -CH₂)(Me)(p-tolyl)] (CD₂Cl₂) δ -0.516 (Ir-Me), 1.354, 1.585 (2 × C₅Me₅), 2.197 (MeC₆H₄), 6.590, 6.698 (2 × d, J 8.0 Hz, aromatic H), 7.488, 7.071 (2 × d, J 1 Hz, 2 × CH₂). trans-[(C_3Me_5Ir)₂(μ -CH₂)₂(Me)(Ph)] (IIIb) (CDCl₃) δ -0.5 (Ir-Me), 1.36, 1.59 (2 × C₅Me₅), 6.52 (tt, J 1.8, 7.0 Hz, p-H), 6.75 (m, m-H) 6.83 (m, o-H), 7.09 and 7.47 (2 × d, J 1.3 Hz, 2 × CH₂).

either an oxidative addition of aryl-H to a $C_5Me_5Ir^{III}Me_2$ species followed by reductive elimination of methane from an IrV intermediate or by a type of Friedel—Crafts arylation possibly involving species such as $[C_5Me_5IrMe]^+$ $[Al_2Me_5Cl_2]^-$.

Acknowledgement

We thank the S.E.R.C. for supporting this work, the Spanish Ministry of Education for the award of a fellowship (to A.V. de M.), Dr. B.F. Taylor for some NMR spectra and Johnson-Matthey for a generous loan of iridium chloride.

References

2 K. Isobe, P.M. Bailey and P.M. Maitlis, J. Chem. Soc., Chem. Commun., (1981) 808.

¹ A.H. Janowicz and R.G. Bergman, J. Am. Chem. Soc., 104 (1982) 352; J.K. Hoyano and W.A.G. Graham, ibid., 104 (1982) 3723; W.D. Jones and F.J. Feher, ibid., 104 (1982) 4240.

³ A. Váquez de Miguel, K. Isobe, B.F. Taylor, A. Nutton and P.M. Maitlis, J. Chem. Soc., Chem. Commun., (1982) 758.